
LLNL-TR-532851

Applying graph partitioning
methods in measurement-based
dynamic load balancing

A. Bhatele, S. Fourestier, H. Menon, L. V. Kale, F.
Pellegrini

February 27, 2012



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 

 
 

 

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under Contract DE-AC52-07NA27344. 
 



Applying graph partitioning methods in
measurement-based dynamic load balancing

Abhinav Bhatele1,?, Sébastien Fourestier2, Harshitha Menon3,
Laxmikant V. Kale3 and François Pellegrini2

1 Center for Applied Scientific Computing, Lawrence Livermore National Laboratory
2 Laboratoire Bordelais de Recherche en Informatique & INRIA Bordeaux

3 Department of Computer Science, University of Illinois at Urbana-Champaign
? bhatele@llnl.gov

Abstract. Load imbalance can lead to wasted CPU hours especially
when running on a large number of processors. Achieving the best par-
allel efficiency for a program requires optimal load balancing which is a
NP-hard problem. Charm++, a migratable objects based programming
model, provides a measurement-based dynamic load balancing frame-
work. This paper explores the use of graph partitioning algorithms, tradi-
tionally used for partitioning physical domains/meshes, for measurement-
based dynamic load balancing of parallel applications. In particular, we
present repartitioning methods developed in a graph partitioning toolbox
called Scotch that consider the previous mapping to minimize migration
costs. We also discuss a new imbalance reduction algorithm for graphs
with irregular load distributions. We compare several load balancing al-
gorithms using a micro-benchmark and the NAS BT multi-zone bench-
mark. New algorithms developed in Scotch lead to better performance
compared to other existing partitioners, both in terms of the application
execution time and fewer number of objects migrated.

Keywords: load balancing, graph partitioning, dynamic, performance

1 Introduction

The efficient use of large distributed memory parallel machines requires spread-
ing the computation load evenly across different processors and minimizing the
communication overhead. When the tasks/processes that perform the computa-
tion co-exist for the entire duration of the parallel program, the load balance
problem can be modeled as a constrained graph partitioning problem on an un-
oriented graph. The vertices of this process graph represent the computation to
be performed and its edges represent inter-process communication. The problem
of mapping these vertices to processors can be viewed as the partitioning and
mapping of a graph of n vertices to p physical processors. The aim is to assign
the same load to all processors and to minimize the edge cut of the graph, that
is, the sum of the weights of edges whose ends are on different physical proces-
sors. Although the problem of partitioning communicating tasks to processors



II Abhinav Bhatele et al.

appears similar to that of partitioning large unstructured meshes to processors,
the differences are significant and lead to major algorithmic changes. The most
significant difference is that the number of tasks per processor is on the order of
ten in load balancing, whereas for meshes, the number is closer to a million.

In this paper, we evaluate the deployment of static mapping and graph repar-
titioning, traditionally used for partitioning physical domains/meshes, for bal-
ancing load dynamically in over-decomposed parallel applications. We have cho-
sen a specific programming model, Charm++ [10] and a graph partitioning
library, Scotch [14] for implementing the new algorithms and heuristics. How-
ever, the techniques described here are generally applicable to other program-
ming models and use of other graph partitioning libraries [9, 11].

The Charm++ runtime includes a mature load balancing framework. For
applications in which computational loads tend to persist over time, the frame-
work supports measurement-based load balancing. It records task loads for pre-
vious iterations to influence load balancing decisions for the future and hence
can adapt to slow or abrupt but infrequent changes in load. Based on differ-
ent partitioning and repartitioning algorithms in Scotch, we have developed
ScotchLB and ScotchRefineLB for comprehensive (fresh assignment of all tasks
to processors) and refinement-based load balancing respectively.

We discuss modifications to existing algorithms in Scotch to make them
more suitable for scenarios encountered in load balancing. This presents a dis-
tinct set of challenges compared with mesh partitioning, which is what graph
partitioners are usually designed for. In addition to evaluating the classical re-
cursive bipartitioning method in Scotch, we discuss two new algorithms in
this paper: 1. a k-way multilevel framework for repartitioning graphs that takes
the object migration cost into account and tries to minimize the time spent in
migrations, and 2. a new algorithm for balancing graphs with irregular load dis-
tributions and localized concentration of vertices with heavy loads, a scenario
which is not handled well by the classical recursive bipartitioning method.

We present a comprehensive comparative evaluation of Scotch-based load
balancers with other existing (greedy and refinement) load balancing algorithms
in Charm++ and with MeTiS and Zoltan-based load balancers. We use a
micro-benchmark and the NAS BT multi-zone benchmark for comparisons and
present results for runs on Intrepid (Blue Gene/P) and Steele (a Dell-Intel clus-
ter). New algorithms developed in Scotch lead to better performance compared
to other graph partitioners, both in terms of the application execution time and
fewer number of tasks migrated.

2 Dynamic communication-aware load balancing

An intelligent load balancing algorithm must take into account, both the char-
acteristics of the parallel application and the topology of the target architecture.
The application information includes task processing costs (computational loads)
and the amount of communication between tasks. The architecture information
includes the processing speeds of the cores and the costs of communication be-
tween different cores and nodes. When the loads and communication patterns



Applying graph partitioning methods in load balancing III

do not change during program execution, load balancing can be done statically
at program startup. A mapping is called static if it is computed prior to the
execution of the program and is never modified at run-time. However, if the load
and/or communication patterns change dynamically, the mapping must be done
at runtime (often called graph repartitioning or dynamic load balancing).

Graph partitioning has been used in the past to statically partition computa-
tional tasks to processors [1,15]. However, complex multi-physics simulations and
heterogeneous architectures present a need for dynamic load balancing during
program execution. This requires input from the application about the chang-
ing computational loads and communication patterns. Zoltan [5] is one such
framework for dynamic load balancing of parallel applications that uses hyper-
graph partitioners to balance entities indicated by the application. Charm++
also includes an automatic dynamic load balancing framework.

Applications written in Charm++ over-decompose their computation into
virtual processors or objects called “chares” which are then mapped on to physi-
cal processors by the runtime system. This initial static mapping can be changed
as the execution progresses by migrating objects to other processors if the sim-
ulation leads to a load imbalance. This is facilitated by a load balancing frame-
work that instruments the application to obtain the computational loads and the
communication graph of the objects and uses them to make informed decisions
for migrating objects [4]. Measurement-based load balancing is effective when
the load and communication pattern of the application either change slowly, or
change abruptly but infrequently. In these situations, data from the recent past
is a good predictor of the near future. For other situations, the application can
provide performance estimates for the objects to supplant the measurements.

There are several load balancing strategies built in to Charm++, two of
which are used in this paper for comparison with Scotch-based load balancers.
GreedyLB is a comprehensive load balancer based on the greedy heuristic that
maps the heaviest objects on to the least loaded processors iteratively until the
load of all processors is close to the average load. RefineLB is a refinement load
balancer that migrates objects from processors with greater than average load
(starting with the most overloaded processor) to those with less than average
load. The aim of this strategy is to reduce the number of objects migrated. We
also compare with MetisLB and ZoltanLB, strategies that use MeTiS (recursive
graph partitioning) and Zoltan (hypergraph partitioning) respectively.

3 Scotch for graph partitioning and load balancing

Scotch [14] is a software project developed at the Laboratoire Bordelais de
Recherche en Informatique of Université Bordeaux 1 and INRIA Bordeaux Sud-
Ouest. Its goal is to provide efficient graph partitioning heuristics for scientific
computing, making them available to the community as a software toolbox.

3.1 Static mapping methods in Scotch

Although Scotch also deals with combinatorial problems such as sparse ma-
trix ordering, its first purpose was to compute static mappings by means of



IV Abhinav Bhatele et al.

graph algorithms. Two main classes of algorithms are used to compute static
mappings: direct k-way methods and recursive bipartitioning methods. Both k-
way and bipartitioning methods take advantage of a multilevel framework to
reduce problem complexity and compute time. In this framework, the graph to
bipartition or k-map is repeatedly coarsened by matching neighboring vertices.
Then, an initial mapping is computed on the coarsest graph, and this mapping
is prolonged back, from coarser to finer graphs [2, 9].

In order to ensure that the granularity of the multilevel solution is that of the
original graph and not that of the coarsest graph, the prolonged mappings are
refined at every level using local optimization algorithms. The most commonly
used algorithms in literature are the Kernighan-Lin [12] (KL) and Fiduccia-
Mattheyses [7] (FM) algorithms. The KL algorithm reduces the cut by perform-
ing swaps of vertices, and is consequently quadratic in time with respect to the
number of vertices because of its vertex pairing routine. The FM algorithm con-
siders single vertex movements only, is therefore quasi-linear in time, and hence
used often. Scotch uses two kinds of FM-based algorithms: one for optimizing
bipartitions, and one for optimizing k-way mappings. These algorithms operate
in two modes: when the current partition is heavily imbalanced, they first seek
to restore the prescribed balance, even it if means increasing the edge cut met-
ric. When the current partition is balanced, they seek to minimize the edge cut
metric without getting out of the user-prescribed imbalance threshold. Although
these algorithms are fast, we will see in Section 3.3 how using FM rather than
KL may lead to problems for graphs with irregular load distributions.

The core static mapping algorithm that is used to compute mappings from
scratch is the Dual Recursive Bipartitioning (DRB) algorithm [13]. It recursively
allocates subsets of processes to subsets of processors. It starts by considering
a set of processors, also called the domain, containing all the processors of the
target machine, and with which all the processes to be mapped are associated.
At each step, the algorithm bipartitions a domain into two disjoint subdomains,
and calls a graph bipartitioning algorithm to split the subset of processes associ-
ated with the domain across the two subdomains. When the processor graph is a
complete graph, this process degenerates into simple recursive graph bipartition-
ing. Initial bipartitions are computed by way of locality-preserving greedy graph
growing heuristics, that grow parts from randomly selected seed vertices [11].

Combining all of the above, the standard strategy for computing static map-
pings from scratch in Scotch 6.0 is to use k-way multilevel partitioning down
to a size of 20 vertices per partition, after which the DRB algorithm is called
on the coarsest k-way graph. Bipartitions are computed in the DRB algorithm
using a multilevel method of greedy graph growing for computing the initial
bipartition on the coarsest graph.

In this paper, the size of the test graphs and the desired number of partitions
limits the use of k-way methods to a few levels only. Using a k-way framework
around the DRB algorithm is however still beneficial, because even a single k-
way FM on the finest graph can compensate for the load imbalance accumulated
in the course of multiple levels of recursive bipartitioning.



Applying graph partitioning methods in load balancing V

3.2 Repartitioning methods in Scotch

Another new feature of Scotch 6.0 is the ability to compute remappings of a
graph, based on an existing mapping. In the context of this paper, target topolo-
gies are assumed to be homogeneous, and remapping degenerates into reparti-
tioning. This scheme is referred to as refinement load balancing in Charm++.
Every vertex of the graph to be remapped is associated with a fictitious edge that
connects it to a fictitious vertex that represents the old partition (like in [5]).
Doing so allows us to integrate the migration cost within the existing edge cut
minimization process. All of the fictitious edges are weighted, with a weight that
represents the cost of migrating the vertex to another partition.

All of the aforementioned mapping algorithms have been adapted to take into
account the information borne by the fictitious edges. In most cases, these edges
do not have to be added to the graphs, thus reducing the cost of the method. For
instance, in the DRB algorithm, bipartitioning algorithms already account for a
bias. The estimated distance of graph vertices to ends of edges that have been
cut at previous stages of the recursive bipartitioning process is modeled, and it is
straightforward to add the migration penalty to this bias. The coarsening phase
does not require the presence of fictitious edges either. It is only during the local
refinement phases that they are necessary, yet on smaller, band graphs.

3.3 A new algorithm for reducing load imbalance

All of the aforementioned algorithms were designed for graphs whose vertex load
distribution is regular and not severely imbalanced. In particular, it was assumed
that it is always possible to achieve load balance by sequences of moves involving
only those vertices that are located on the current boundaries of the partitions,
as in the case of domain decomposition problems. Such assumptions result in
algorithms that privilege locality by design.

However, when load distribution is very irregular, such algorithms may fail to
provide adequate load balance. Load distribution artifacts may not be compen-
sated if, for instance, some vertices with very high loads are localized in a small,
strongly coupled, portion of the graph. These vertices will most likely be kept
together by the first levels of the recursive bipartitioning algorithm until, when
trying to bipartition the cluster, the algorithm can only compute bipartitions
that are highly imbalanced because of the very high granularity of the vertex
loads. Moreover, since the FM algorithm uses vertex movements and not vertex
swaps as in the KL algorithm, movements of the heaviest vertices can never be
considered. Moving a heavy vertex out of its slightly overloaded partition may
result in heavy overload of the destination partition, as well as leaving its original
partition drastically underloaded.

To address this problem, a new load imbalance reduction algorithm has been
implemented in Scotch. It is activated when the load imbalance ratio of the cur-
rent k-way partition at some uncoarsening level is above the prescribed threshold.
Based on the discussion above, this current partition is assumed to preserve lo-
cality. The main loop of the algorithm considers all vertices in descending weight
order. If the considered vertex fits in its current destination partition, it remains



VI Abhinav Bhatele et al.

there. If the vertex causes its destination partition to be overloaded, possible
alternate destination partitions are tried out in target domain recursive bipar-
tition tree order. The neighboring domain of the last bipartition level is tried
first, then the two children of the neighbor domain in the second-last level, and
so on. Therefore, closest domains in the target architecture partitions are tried
out first, before farther ones. This algorithm may increase the communication
cut, but only locally, as far as mapping is concerned. Once a balanced partition
is achieved, communication cost minimization can be applied, by using k-way
FM, so that vertices that have been placed alone in a distant partition can try
to pull neighboring vertices in their partition so as to reduce the cut locally.

In summary, the algorithms that have been experimented with in this paper
comprise of: (i) the classical dual recursive bipartitioning (or static mapping)
method of Scotch (referred to as ScotchLB), (ii) a new k-way multilevel
framework for partitioning and repartitioning graphs (referred to as ScotchRe-
fineLB), and (iii) a specific algorithm for handling graphs with irregular load
distributions and localized concentration of vertices with heavy loads.

4 Case Studies

We compare the performance of different load balancing strategies using a micro-
benchmark and the NAS BT multi-zone benchmark on multiple machines.

kNeighbor is a micro-benchmark with a near-neighbor communication pattern.
In this benchmark, each object exchanges messages with a fixed set of objects
in every iteration. Each object is assigned some amount of computational load.

BT MZ is one of the multi-zone applications in the NAS Parallel Benchmark
suite (NPB) [16]. It is a parallel implementation for solving a synthetic system of
non-linear PDEs using block tridiagonal matrices. It consists of uneven size zones
within a problem class and hence is useful for testing the effectiveness of a load
balancer. In this paper, we compare the performance of various load balancers
for class C and class D of BT MZ in NPB 3.3. For class C, the benchmark creates
a total of 256 zones, and for class D, it creates 1024 zones, with an aggregated
grid size of 480 × 320 × 28 and 1632 × 1216 × 34 respectively. Boundary values
between zones are exchanged after each iteration.

The experiments were run on Intrepid and Steele. Intrepid is a 40, 960-node
Blue Gene/P installation at the Argonne National Laboratory. Each node on
Intrepid consists of four 850 MHz PowerPC cores. The principal interconnect for
point-to-point communication in this system is a 3D torus with a bi-directional
link bandwidth of 850 MB/s. The experiments were run in VN mode using all
four cores per node. Steele is a Dell cluster at Purdue University, operated by the
Rosen Center for Advanced Computing. Each node on Steel has two quad-core
2.33 GHz Intel E5410 chips or two quad-core 3.00 GHz Intel E5450 chips. The
interconnect used is Gigabit Ethernet or InfiniBand for different nodes.

We compare performance of Scotch-based load balancers with load bal-
ancers in Charm++, GreedyLB and RefineLB, and also with MeTiS and
Zoltan-based load balancers. For MetisLB, both recursive bipartitioning and



Applying graph partitioning methods in load balancing VII

100

102

104

106

108

1010

512 1024 2048 4096 8192R
at

io
 o

f r
em

ot
e 

to
 lo

ca
l c

om
m

un
ic

at
io

n

Number of cores

kNeighbor: Ratio of remote to local communication on Intrepid

GreedyLB
RefineLB
MetisLB

ZoltanLB
ScotchLB

ScotchRefineLB

100

101

102

103

104

105

106

107

108

109

512 1024 2048 4096

N
um

be
r o

f m
ig

ra
tio

ns
 p

er
 st

ep

Number of cores

kNeighbor: Number of migrations on Intrepid

GreedyLB
RefineLB
MetisLB

ZoltanLB
ScotchLB

ScotchRefineLB

Fig. 1. Ratio of local to remote communication and number of migrations for kNeighbor

k-way multilevel partitioning were used. For ZoltanLB, hypergraph partitioner
is used with the partition and the re-partition method. Finally, for Scotch-
based load balancers, two flavors of the mapping methods, STRAT QUALITY and
STRAT BALANCE, were tried. In all of the above cases, we report the result of the
better performing strategy. As mentioned earlier, we implemented two load bal-
ancing strategies in Charm++ that use graph partitioning methods available
in Scotch. The first one, ScotchLB, does a fresh partitioning and assignment of
objects to processors ignoring the previous mapping. The second one, ScotchRe-
fineLB, uses repartitioning methods (Section 3.2) to refine the initial partitioning
and mapping created by ScotchLB. Hence for ScotchRefineLB results, ScotchLB
is invoked once, when program execution begins, followed by several calls to
ScotchRefineLB.

The following metrics are used to compare the performance of the load bal-
ancing algorithms: (1) Execution time per step for the application, which is the
best indication of the success of a load balancer. (2) Time spent in the load
balancing strategy and migration. This, along with the frequency of load bal-
ancing, determines whether load balancing is beneficial. (3) Number of objects
migrated, signifying the amount of data movement resulting from load balancing
and hence the associated communication costs. (4) Total application time, which
includes the time for the iterations, load balancing strategy and migration.

4.1 Comparisons using kNeighbor

In this section, we present the results for kNeighbor runs on Intrepid. For these
experiments, the number of objects is eight times the number of processors.
The baseline experiment is referred to as No LB, where, no load balancing is
performed and the runtime does a static mapping of all objects to processors,
attempting to assign equal number of objects to each processor.

Figure 1 (left) demonstrates the capability of graph partitioning based load
balancers in mapping communicating objects to the same processor. Communi-
cation between objects on the same processor is called local, whereas, between
objects on different processors is considered remote. This figure presents the ratio
of remote to local communication for different load balancers. We can see that
graph partitioners succeed in maintaining this ratio close to one i.e. restricting



VIII Abhinav Bhatele et al.

10-2

10-1

100

101

102

103

104

105

512 1024 2048 4096

A
ve

ra
ge

 ti
m

e 
(s

)

Number of cores

kNeighbor: Strategy time on Intrepid

GreedyLB
RefineLB
MetisLB

ZoltanLB
ScotchLB

ScotchRefineLB

 0

 1

 2

 3

 4

 5

512 1024 2048 4096

Sp
ee

du
p

Number of cores

kNeighbor: Speedup in time per step w.r.t. NoLB

No LB
GreedyLB
RefineLB
MetisLB

ZoltanLB
ScotchLB

ScotchRefineLB

Fig. 2. Time spent in the load balancing algorithm and the speedup in the execution
time per step for the application (kNeighbor on Intrepid)

half of the total communication to within a processor. In contrast, for other load
balancers, this ratio is at least an order of magnitude higher denoting excess of
remote communication.

Figure 1 (right) presents the number of migrations as a result of perform-
ing load balancing. Refinement load balancers, RefineLB and ScotchRefineLB,
which take the migration cost into account, successfully reduce the number of
migrations. However, there exists a tradeoff between reducing the number of
migrations and improving application performance. ScotchRefineLB results in
moderate number of migrations but obtains best performance whereas RefineLB,
which performs the least number of migrations, suffers from performance issues.

Next we compare the time spent in the load balancing strategy (see Figure 2,
left). We find that, as the number of cores increases, the strategy time for all
the load balancers increases. RefineLB is the fastest among all but does not
improve performance. Graph partitioning based load balancers, in general, incur
a higher cost. This overhead, however, is not significant and is offset by the
better performance that the application achieves when using them. As seen in
Figure 2 (right), the load balancers based on Scotch consistently outperform
all the other load balancers. On 8192 cores, ScotchRefineLB gives 42% better
performance than MetisLB. When using ScotchRefineLB, ScotchLB is called
once in the beginning which improves the performance by 15% compared to
NoLB. The speedup from using ScotchRefineLB at 8.192 cores is 1.8.

Finally, Figure 3 presents results for a complete run of the kNeighbor bench-
mark. During this run, we perform load balancing once every 10000 iterations.
The application time is the sum of the times for all the iterations and the load
balancing time, which includes the strategy time and the time for migration of
objects. We can seen in Figure 3, that ScotchRefineLB consistently gives the
best performance on all system sizes. It gives a performance benefit of up to
26% in comparison to other load balancers. When compared to the baseline,
NoLB, ScotchRefineLB and ScotchLB give 31% and 18% improvement respec-
tively (overall speedups of up to 1.4 and 1.2).



Applying graph partitioning methods in load balancing IX

Fig. 3. Speedup in the total application time for kNeighbor on Intrepid

 0

 200

 400

 600

 800

 1000

 1200

32 64 128 256

N
um

be
r 

of
 m

ig
ra

tio
ns

 p
er

 s
te

p

Number of cores

BT_MZ: Number of migrations on Steele

GreedyLB
RefineLB
MetisLB

ZoltanLB
ScotchLB

ScotchRefineLB

 0

 5

 10

 15

 20

 25

 30

32 64 128 256

A
ve

ra
ge

 t
im

e 
(s

)

Number of cores

BT_MZ: Migration time on Steele

GreedyLB
RefineLB
MetisLB

ZoltanLB
ScotchLB

ScotchRefineLB

Fig. 4. Number of migrations and the migration time for BT MZ on Steele

4.2 Comparisons using BT MZ

In this section, we present the results for the NAS BT multi-zone benchmark
runs on Steele. For these experiments, the number of objects per processor varies
with the class of the benchmark used and the system size. For example, a run of
class D on 256 processors will have, on average, four objects per processor. As in
kNeighbor, the baseline run, in which no load balancing is performed, is called
NoLB. We ran class C on 32 and 64 cores and class D on 128 and 256 cores.

Figure 4, presents the number of migrations and the migration time for dif-
ferent load balancing strategies. The amount of data to be transferred, when an
object is migrated, is substantially large in case of BT MZ. Refinement-based
load balancers, RefineLB and ScotchRefineLB which take the migration cost
into account, migrate very few objects. Hence, they spend a significantly smaller
time in migration, as seen in Figure 4, nearly an order of magnitude smaller than
other balancers, in some cases.

Figure 5 (left) compares the time spent in the load balancing strategies. We
observe that, as the system and problem size increase, the strategy time for all
the load balancers increases. However, the strategy time is insignificant in com-
parison to time per step for BT MZ. Figure 5 (right) presents the speedups for
the execution time per step for all the load balancers. ScotchRefineLB performs
best among all the load balancers and shows a speedup of 2.5 to 3 times in



X Abhinav Bhatele et al.

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 0.1

32 64 128 256

A
ve

ra
ge

 t
im

e 
(s

)

Number of cores

BT_MZ: Strategy time on Steele

GreedyLB
RefineLB
MetisLB

ZoltanLB
ScotchLB

ScotchRefineLB

 0

 1

 2

 3

 4

 5

 6

 7

 8

32 64 128 256

Sp
ee

du
p

Number of cores

BT_MZ: Speedup in execution time w.r.t. NoLB

No LB
GreedyLB
RefineLB
MetisLB

ZoltanLB
ScotchLB

ScotchRefineLB

Fig. 5. Strategy time and speedup in the time per step for BT MZ on Steele

Fig. 6. Speedup in the total application time for BT MZ on Steele

comparison to NoLB. In comparison to other load balancers, ScotchRefineLB
performs better by 11%.

The results for a complete run of BT MZ in which load balancing is performed
once in every 1000 iterations are presented in Figure 6. Since, the strategy time
is negligible, the application time primarily consists of the time per step and the
migration time. The trends are similar to the speedups observed in Figure 5.
ScotchRefineLB performs better than all other load balancers consistently by
up to 12%. In comparison to NoLB, ScotchRefineLB obtains speedups ranging
from 1.5 to 2.8 and ScotchLB obtains speedups from 1.2 to 2.5.

5 Related Work

The problem of load balancing (also known as multiprocessor scheduling) of
computational tasks is known to be NP-hard [8]. The load balancing of n jobs
on to p processors is strongly NP-hard. However, solutions that can bring the
load imbalance (ratio of maximum to average load) within 5-10% of the optimal
are still desirable. Load balancing is a much studied problem and algorithms and
heuristics from various fields have been applied to it, ranging from prefix sum,
recursive bisection, space filling curves to work stealing and graph partitioning.

Graph partitioning has been used for static load balancing of parallel ap-
plications for some time now [1, 15]. MeTiS [11], Chaco [9] and Scotch [14]



Applying graph partitioning methods in load balancing XI

are some popular graph partitioning libraries. ParMeTiS and PT-Scotch are
the parallel versions of MeTiS and Scotch respectively that were developed to
handle the increasing sizes of parallel applications and machines. Parallel algo-
rithms reduce the time and memory requirements for partitioning large graphs.

With the emergence of large-scale heterogeneous architectures and develop-
ment of complex multi-physics applications, the challenge has shifted towards
developing algorithms and techniques for topology-aware, scalable and dynamic
load balancing. Zoltan is one of the few general frameworks that supports dy-
namic load balancing of applications [5]. It provides a suite of load balancing
algorithms including parallel graph partitioning and also allows use of exter-
nal libraries such as ParMeTiS. Other frameworks such as DRAMA [3] and
Chombo [6] provide load balancing capabilities for specific classes of parallel
applications: finite element methods and finite difference methods respectively.

Charm++ provides a framework similar to the Zoltan toolkit with inbuilt
load balancing strategies and the option to deploy external libraries that pro-
vide load balancing algorithms [4]. The runtime uses automatic instrumentation
to obtain the loads and the communication graph which is used by the load
balancing framework. We believe that this paper presents one of the first analy-
ses of using graph partitioning in a measurement-based dynamic load balancing
framework. The added benefits of interconnect topology awareness and hierar-
chical load balancing schemes implemented in Charm++ can also be exploited
in conjunction with graph partitioning and will be discussed in future work.

6 Summary and Next Steps

This paper represents an attempt at exploiting graph mapping and repartitioning
methods for load balancing in parallel computing. Combined with measurement-
based dynamic load balancing capabilities of an adaptive runtime system, a pow-
erful technique for automatic balancing of applications is created. We present
new algorithms, implemented in Scotch, such as k-way multilevel repartitioning
and a load imbalance reduction algorithm that favors load balance over minimiz-
ing the edge cut. This is especially useful for computation-bound applications
with irregular load distributions.

Scotch-based load balancers improve performance for kNeighbor and the
NAS BT multi-zone benchmark by 12-42% over the existing load balancers in
Charm++ and MeTiS and Zoltan-based balancers. They also reduce the
number of migrations, by several orders of magnitude in some cases, which re-
duces the associated communication costs. ScotchRefineLB migrates nearly 11
times fewer objects than MetisLB and ZoltanLB for BT MZ. This shows that
graph partitioning algorithms specifically designed for mapping objects to pro-
cessors give better performance than using generic graph partitioners, such as
MeTiS, for this purpose. Compared to the baseline performance, ScotchRe-
fineLB leads to overall speedups of 1.2 to 1.4 for kNeighbor and 1.5 to 2.5 for
Class D BT MZ.

Future work involves developing an intelligent load balancing framework that
can choose the best strategy automatically (comprehensive versus refinement,



XII Abhinav Bhatele et al.

favoring load balance versus minimizing the edge cut, etc.) depending on the
computation and communication characteristics of an application. Another area
of exploration is the use of architecture-aware mapping strategies available in
Scotch for interconnect topology-aware load balancing.

Acknowledgments

This work was performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
(LLNL-TR-532851). This research was supported in part by Le Centre national
de la recherche scientifique (CNRS) and Région Aquitaine.

References

1. Attaway, S., Barragy, E., Brown, K., Gardner, D., Hendrickson, B., Plimpton, S.,
Vaughan, C.: Transient solid dynamics simulations on the sandia/intel teraflop
computer. In: ACM/IEEE Supercomputing Conference (Nov 1997)

2. Barnard, S.T., Simon, H.D.: A fast multilevel implementation of recursive spec-
tral bisection for partitioning unstructured problems. Concurrency: Practice and
Experience 6(2), 101–117 (1994)

3. Basermann, A., Clinckemaillie, J., Coupez, T., Fingberg, J., Digonnet, H., Ducloux,
R., Gratien, J.M., Hartmann, U., Lonsdale, G., Maerten, B., Roose, D., Walshaw,
C.: Dynamic load balancing of finite element applications with the DRAMA Li-
brary. In: Applied Math. Modeling. vol. 25, pp. 83–98 (2000)

4. Brunner, R.K., Kalé, L.V.: Handling application-induced load imbalance using
parallel objects. In: Parallel and Distributed Computing for Symbolic and Irregular
Applications. pp. 167–181. World Scientific Publishing (2000)

5. Catalyurek, U.V., Boman, E.G., Devine, K.D., Bozdağ, D., Heaphy, R.T., Riesen,
L.A.: A repartitioning hypergraph model for dynamic load balancing. J. Parallel
Distrib. Comput. 69, 711–724 (August 2009)

6. Colella, P., Graves, D., Ligocki, T., Martin, D., Modiano, D., Serafini, D.,
Van Straalen, B.: Chombo Software Package for AMR Applications Design Docu-
ment (2003), http://seesar.lbl.gov/anag/chombo/ChomboDesign-1.4.pdf

7. Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network
partitions. In: Proc. 19th Design Automation Conference. pp. 175–181 (1982)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA (1979)

9. Hendrickson, B., Leland, R.: A multilevel algorithm for partitioning graphs. In:
Supercomputing ’95: Proceedings of the 1995 ACM/IEEE conference on Super-
computing (CDROM). p. 28. ACM, New York, NY, USA (1995)

10. Kalé, L., Krishnan, S.: CHARM++: A Portable Concurrent Object Oriented Sys-
tem Based on C++. In: Paepcke, A. (ed.) Proceedings of OOPSLA’93. pp. 91–108.
ACM Press (September 1993)

11. Karypis, G., Kumar, V.: Parallel multilevel k-way partitioning scheme for irregular
graphs. In: Supercomputing ’96: Proceedings of the 1996 ACM/IEEE conference
on Supercomputing (CDROM). p. 35 (1996)

12. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitionning graphs.
BELL System Technical Journal pp. 291–307 (Feb 1970)



Applying graph partitioning methods in load balancing XIII

13. Pellegrini, F.: Static mapping by dual recursive bipartitioning of process and ar-
chitecture graphs. In: Proc. SHPCC’94, Knoxville. pp. 486–493. IEEE (May 1994)

14. Scotch: Static mapping, graph partitioning, clustering and sparse matrix block
ordering package. http://www.labri.fr/~pelegrin/scotch

15. Shadid, J., Hutchinson, S., Hennigan, G., Moffat, H., Devine, K., Salinger, A.: Ef-
ficient parallel computation of unstructured finite element reacting flow solutions.
Parallel Computing 23(9), 1307 – 1325 (1997)

16. der Wijngaart, R.F.V., Jin, H.: NAS Parallel Benchmarks, Multi-Zone Versions.
Tech. Rep. NAS Technical Report NAS-03-010 (July 2003)


